If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+3n-56=0
a = 9; b = 3; c = -56;
Δ = b2-4ac
Δ = 32-4·9·(-56)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-45}{2*9}=\frac{-48}{18} =-2+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+45}{2*9}=\frac{42}{18} =2+1/3 $
| 5x-12=34+5x | | F(-25)=6x-15 | | x*5/100=40 | | x2=4x-1 | | H(t)=-16t^2+96t+64 | | x^-4=16 | | -10s=-63 | | -10(s+4)=-103 | | 2x+x+(x-5)=100 | | 4z-6=-1 | | 2x2+3=7x | | 7x+6x=54 | | -x/9+1=-53 | | 4(7+6f)=-15 | | 6-x/3=18 | | 10=3v-2 | | x/7-15=21 | | 3y^2-17+56=0 | | 5=x/4+4 | | -9x-64=-12x+38 | | m^2+4m+9=0 | | 4(2x+7)-2(x-2)=8 | | Z^2-6.3z+0.1=0 | | 27-5r=-9(3r-8) | | 17p+12=10p-13+p | | -44+11x=14x+37 | | A^2-70a+1225=0 | | -12+x+5=6 | | r²+4r=-1 | | 2x+2x^2-84=0 | | 100y^2=4 | | 15=3/2w |